€ 20,00


Deep Learning for Clinical Practice

Enhancing Chest X-ray Diagnostics

Ecem Sogancioglu • Boek • paperback

  • Samenvatting
    Free download at https://doi.org/10.54195/9789493296770

    This thesis investigates the application of deep learning to enhance chest X-ray analysis, addressing key challenges in clinical diagnostics. Chapter 2 reviews around 300 studies on chest X-ray interpretation with deep learning, identifying critical research gaps and guiding future work. Chapter 3 introduces a segmentation-based approach for detecting cardiomegaly, demonstrating improved performance and explainability over commonly used classification-based approaches. Chapter 4 focuses on deep learning techniques for estimating total lung volume from chest X-rays, revealing the potential of new capabilities beyond standard visual assessments. Chapter 5 presents the NODE21 research challenge, designed to benchmark state-of-the-art methods for lung nodule detection and generation, highlighting the benefits of synthetic image generation when real data is limited. The thesis underscores the potential of automated systems to enhance diagnostic accuracy, reduce radiologists workloads, and support clinical decision-making, ultimately contributing to the development of clinically relevant AI tools for medical imaging.
  • Productinformatie
    Binding : Paperback
    Distributievorm : Boek (print, druk)
    Formaat : 170mm x 240mm
    Aantal pagina's : 192
    Uitgeverij : Radboud University Press
    ISBN : 9789493296770
    Datum publicatie : 11-2024
  • Inhoudsopgave
    niet beschikbaar
  • Reviews (0 uit 0 reviews)
    Wil je meer weten over hoe reviews worden verzameld? Lees onze uitleg hier.

Dissertations
published by

€ 20,00



3-4 werkdagen
Veilig betalen Logo
14 dagen bedenktermijn
Delen 

Fragment

niet beschikbaar

×
SERVICE
Contact
 
Vragen